STEREOCHEMICAL STUDIES 130 SATURATED HETEROCYCLES 132¹

SYNTHESIS AND RING-CHAIN TAIJTOMERISM OF STEREOISOMERIC 1,3-OXAZINES **CONDENSE0 WITH THE CYCLOPENTANE** RING'

FERENC FULUP⁺, KALEVI PIHLAJA and JORMA MATTINEN

Oepartment of Chemistry, University of Turku, SF-20500 Turku, finland

and

GABOR BERNATH"

Institute of Pharmaceutical Chemistry, University Medical School, H-6701 Szeged, POE 121, Hungary

(Received in UK 9 *February 1987)*

Abstract - Through condensation of cis-2-hydroxymethylcyclopentylamine (<u>3</u>) and <u>cis</u>-2-aminomethylcyclopentanol (<u>5)</u> with aromatic aldehydes, tautomeric mixtures of 1,3-oxaziñes and open-chain Schiff bases were obtained. **The two** series of compounds (<u>4a-f, 6a-f</u>) gave satisfactory linear correlat corresponding to log K_X = shown earlie k**ơ'** + log K_{X=W}(k = 0.76 ±0.04 as **The** ring form of the corresponding trans derivatives is present in a fairly low amount, because strain in the <u>trans</u> fusion of the cyclopentane and the six membered hetero ring. <u>N</u>-Methyl substitution makes the rin form in the latter compounds stable, resulting in oxazines 12 and $\mathbf{1}\underline{\mathbf{4}}$. All the cyclizations in question occurred stereo- $^{-1}$ specific

The ring-chain tautomerism of tetrahydro-1,3-oxazines and 1,3-oxazolidinss is a well-known process. $\text{{}^{2-3}}$ The tautomerism of oxazolidines has been thoroughly inve tigated, since the ring formation is a disfavoured 5-endo-trig process according to the Baldwin rules, $4-8$ but for the 1,3-oxazine series quantitative data on the tautomeric ratios are available only for 3,4-dihydro-2H-1,3-benzoxazines.⁹

A comparative study was recently carried **out on the** ring-chain tautomerism of ssven different series of 2-aryl-substituted tetrahydro-1,3-oxazines: tetrahydro-l,S**oxazines (11,** (r-Ba;c-2,c-4a)- and (r-8a,c-2,t-4a)-1,3-perhydrobenzoxazines, $(r-8a, c-2, c-4a)$ - and $(r-8a, c-2, t-4a)$ -

3,1-perhydrobenzoxazines, 3,4-dihydro-2H-1,3-benzoxazines and 1,2-dihydro-4l+3,1 benzoxazines.² For all seven series, the following equation is valid:

log K_X = (0.76 **f** 0.04) σ ⁺ + log K_{X=H} (1)

where log K_X = log $\left[\text{ring}\right]/\left[\text{chain}\right]$, and σ^* = the Hammett constant. 10 The sum of the

Permanent address: Institute of Pharmaceutical Chemist; Permanent address: Institute of Pharmaceutical Chemistry, University Medica
School, H-670l Szeged, POB 121, Hungary.

steric **and** electronic effects for the substituted oxazines was given as c = log K_x - log K_n, where log K_n = -0.15 (log [ring]/[chain] for 2-phenyltetrahydro-1,3-oxazine). In other words, the constant c is the difference between the intercepts for the basic $(\underline{1})$ and the substituted ring systems. A high value of c means a stabilization of the ring form, while a negative c value shows a destabilization effect due to the substitution of the ring form.²

Our present aim was a comparative investigation of the ring-chain tautomerism of 1,3-oxazines condensed with the cyclopentane ring.

RESULTS AN0 DISCUSSION

Through condensation of <u>cis</u>-2-hydroxymethylcyclopentylamine (<u>}</u>) or <u>cis</u>aminomethylcyclopentanol (2) with aromatic aldehydes, six 2-aryl-substituted 1,3oxazine derivatives ($\frac{4}{2}$ a $\frac{2}{5}$ and $\frac{2}{2}$ e $\frac{2}{5}$) were prepared in each case. The synthese were performed in ethanol at room temperature. Since the open-chain form predominates in the trans series and the proportion of the ring form is fairly small, the relative experimental error is high. Therefore, only two representatives (g_{2,}g and $\underline{10}$ g,<code>b</code>) were prepared from each of the corresponding $\underline{\mathtt{trans}}$ -1,3-aminoalc 2 and 2 (Scheme 2).

The tautomeric ratios were based on the integrals of well-separated proton signals (Table 4). In the 400 MHz spectra, the signals of the C-2 methylene protons of the ring form and the corresponding methine protons of the open-chain form were usually the best choice. The characteristic data are given in Tables 2 and 3.

The ring-closures always proved to be stereospecific, 11,12 the **NMR** spectra indicating **the presence** of a single 1,3-oxazine derivative only, with the relative configuration shown in Schemes 1 and 2.

In parallel with the earlier findings 13 on the cyclohexane-condensed tetramethylene analogues, the vicinal coupling constants between the C-4 or C-6 methylene protons and H-5 of the hetero ring of the cis isomers indicate two theoretically possible main conformations, of which the O-inside or N-inside forms predominate, respectively.

When equation (1) was applied to the log K values for the cis isomers $\underline{4}$ and 6 , satisfactory linear correlations were obtained against the Hammett σ^+ \overline{v} alues $\overline{\overline{s}}{}^{0}$ (Fig. 1, Table 1). The slopes of the plots correspond within experimental error to that in equation (1). The c values, the sums of the steric and electronic effects of the oxazine substituents,² are relatively small $[4: 0.07]$ (0.95) , $6: 0.31$ (0.57) ; the c values of the corresponding perhydrobenzoxazine homologues are shown in parentheses], $^\prime$ which shows that the strain $\,$ due to the $\,$ cyclopentane ring fusion clearly destabilizes the oxazine ring.

Figure 1. The Hammett plots (equation 1) for compounds $\frac{1}{2}$ (a) and $\frac{1}{2}$ (o)

Table 1. Linear regression analysis data on compounds 4 and 6

For the <u>trans</u> counterparts § and l̥Q, the destabilization effect is con siderably higher. The 2-phenyl-substituted derivatives $\frac{5}{2}$ and $\frac{1}{2}$ contain merel 1.1 and 4.7% of the ring form, and accordingly the estimated c values are very low $(\sim-3.1$ and ~-1.5 , respectively).

Although the free energy difference $(2.9 \text{ kJ/mol})^{16}$ between cis and transhydrindane is only slightly in favour of the trans isomer, the ring-closure reactions of <u>cis</u> and <u>trans</u>-1,2-disubstituted 1,3-difunctional cyclopentane der: vatives leading to the 1,3-heteroanalogues of trans-hydrindane derivatives exhibited a very considerable difference.^{16,17} For instance, some trans-1,2-disubstituted 1,3-difunctional cyclopentane derivatives, e.g. 2-hydroxy-l-carboxamides¹⁸ or trans-2-hydroxymethylcyclopentanol, 19 could not be cyclized with aldehydes to the corresponding trans-fused 1, 3-heterocyclanes. However, these

compounds underwent an easy ring-closure, when 1,3-heterocyclanes with a delocalized bond system were formed.^{16,17} The above results on the ring-chain tautomerism of compounds $\frac{1}{2}$, $\frac{6}{2}$, $\frac{8}{2}$ and $\frac{10}{2}$ are in agreement with these literature data.

Table 2. Selected 1 H NMR chemical shifts (ppm) and coupling constants (Hz) for compounds <u>4a</u>-f and 0a,b⁸

^a For easier comparability of the spectroscopic data on the ring and chain forms, the same numbering system has been used. b o CH₃ ring/chain, $\frac{4}{2}$ g: 2.32/2.36; $\frac{4}{2}$ g: 3.79/3.83; $41: 2.92/3.01$ ppm. ^C Cannot be determined because of the overlapping lines.

Table 3. Selected 1 H NMR chemical shifts (ppm) and coupling constans (Hz) for compounds $69 - 1$ and $109, 6^2$

 $^{\text{a}}$ See Table 2, footnote a. $^{\text{b}}$ For all compounds, H-2 shows long-range couplings (from 0.5 to 1.6 Hz) with both of the H-4 protons. $^{\text{C}}$ of CH₃ ring/chain, $\frac{6}{2}$: 2.32/2.37; ég: 3.77/3.82; éf: 2.92/3.02 ppm.

Since the presence of the ring form was detected in products β and 10 , the N-methyl-substituted ring forms 8A and 10A should be stable. The N-methylamiñoalcohol 11 was prepared from 7 with ethyl chloroformate, followed by LiAlH_A reduction, while compound $\frac{1}{2}$ was obtained from the corresponding 2-hydroxycarboxamide by our earlier procedure.¹⁶ The reaction of p-nitrobenzaldehyde with $\underline{\mathbf{l}}$

÷,

or 12 resulted stereospecifically in compound **12 or 14,** with relative configurations ($\underline{r-4},\underline{c-2},\underline{t-5}$) and ($\underline{r-6},\underline{c-2},\underline{t-5}$), respectively (Scheme 3).

EXPERIMENTAL

The 'H NMR spectra were recorded on a JEOL GX 400 MHz FT-NMR spectrometer in COC13 solution, at ambient temperature, using **TMS** as internal standard. The number of scans was 40; if the proportion of one of the tautomeric forms was less than 5X, the number of scans was 80. In general, the ring-chain tautomeric ratios were based on the integrals of the respective methylene and methine proton signals at -8.2 and ~5.1 ppm. If necessary, other well-separated signals were also used.

Melting points are uncorrected.

Reaction of aminoalcohols $\frac{3}{2}$, $\frac{5}{2}$, $\frac{7}{2}$ and $\frac{9}{2}$ with aromatic aldehydes

The aminoalcohol $(3, 5, 7 \text{ or } 2)^{20}$ (0.23 g; 2 mmol) was dissolved in ethanol (15 ml) and a p-substituted benzaldehyde (2 mmol) was added. After standing for 3 h at room temperature, the solvent mixture was removed by evaporation and the products <u>4a, 4f, 6a</u> and 6f were crystallized from hexane. The other products were oily. In the case of these derivatives the evaporation was repeated after the addition of 10 ml of benzene. After drying for 24 h in vacuum at room temperature, the oily products gave correct analytical data (Table 3).

trans-N-Methyl-2-hydroxymethylcyclopentylamine (11)

trans-2-Hydroxymethylcyclopentylamine 20 $\bar{2}$ (1.15 g; 0.01 mol) was dissolved in benzene (20 ml) and 10 ml of 8% aqueous **NaOH** and ethyl chloroformate (1.05 ml, 0.011 mol) were added with stirring. After 30 min the benzene layer was separated from the mixture and dried (Na₂SO_A), and the solvent was evaporated. The resulting colourless oil was added to a stirred suspension of LiAlH_A (0.76 g; 0.02 mol) in dry THF (50 ml). The mixture was stirred and refluxed for 20 min, then cooled with ice, and water (2 ml) in THF (20 ml) was added dropwise. After stirring for 30 min, the inorganic material was filtered off. After drying (Na₂SO₄) of the filtrate and evaporation of the THF, the aminoalcohol $\frac{11}{2}$ was obtained as a colourless oil (yield 67%). A small amount of the product was converted to the picrate for analysis. **M.p. 119-121 'C (acetone/ether). (Found: C, 43.60; H, 5.18; N, 15.75. C19H18N408** requires: C, 43.58; H, 5.06; N, 15.64%).

(r-4,c-2,t-5)-N-Methyl-2-p-nitrophenyl-4,5-trimethylenetetrahydro-l,3-oxazine (12)

The aminoalcohol $\frac{11}{4}$ (0.26 g; 2 mmol) was refluxed with p-nitrobenzaldehyde (0.30 g; 2 mmol) in ethanol (15 ml> for 12 h. The solvent was then evaporated off and the product was recrystallized from hexane, m.p. 128-129 'C, yield 52%. **(Found:** C, 64.21; H, 7.01; N, 10.47. C₁₄H₁₈N₂O₃ requires: C, 64.10; H, 6.92; N, 10.68%.)

Table 4. Physical and analytical data on the compounds prepared $(\frac{1}{2}, \frac{6}{2}, \frac{8}{2}, \frac{10}{2})$

^a From n-hexane. ^b Lit.²¹ m.p. 84.5-85.5 ^oC. ^C Almost colourless or light-yellow viscous $\overline{\text{ol}}$. d Lit. 21 m.p. 80-81 ^OC.

¹H NMR δ = 8.22, 7.66 (dd, 4H, aromatic protons), 4.37 (s, 1H, H-2), 4.30 (q, 1H, H-6eq, J = 4.3, -10.5 Hz), 3.48 (t, 1H, H-6ax, J = 10.5, -10.5 Hz), 1.92 $(s, 3H, N-CH₃)$, 1.2-2.1 ppm $(m's, 8H,$ aliphatic protons).

 $(r-6, c-2, t-5)$ -N-Methyl-2-p-nitrophenyl-5,6-trimethylenetetrahydro-1,3-oxazine ($\frac{14}{2}$)

Oxazine 14 was prepared similarly as 12, but starting from the aminoalcohol 13.16 M.p. 87-89 °C, yield 61%. (Found: C, 64.08; H, 7.14; N, 10.67. C₁₄H₁₈N₂O₃ --
requires: C, 64.10; H, 6.92; N, 10.68%.)

¹H NMR δ = 8.22, 7.67 (dd, 4H, aromatic protons), 4.92 (s, 1H, H-2), 3.33 (m, 1H, H-6, J = 11.8 Hz), 3.29 (m, 1H, H-4eq, J = -11.8, 6.3 Hz), 2.63 (t, 1H, H-4ax, J = -11.8, 11.8 Hz), 2.04 (g, 3H, N-CH₃), 1.1-2.0 ppm (m's, 7H, aliphatic protons).

REFERENCES AND NOTES

- 1. Part 129/121: K. Pihlaja, F. Fülöp, J. Mattinen, G. Bernáth, Finn. Chem. Lett., submitted for publication.
- 2. F. Fülöp, K. Pihlaja, J. Mattinen, G. Bernáth, <u>J</u>. Org. Chem., submitted for publication (and references cited therein).
- 3. E. D. Bergmann, Chem. Rev., 22, 309 (1953).
- 4. J. V. Paukstelis, L. L. Lambing, Tetrahedron Letters, 1970, 299.
- 5. J. B. Lambert, M. W. Majchrzak, J. Am. Chem. Soc., 102, 3588 (1980).
- 6. C. Agami, T. Rizk, Tetrahedron, 41, 537 (1985).
- 7. M. E. Alva Astudillo, N. C. J. Chokotho, T. C. Jarvis, C. D. Johnson, C. C. Lewis, P. D. McDonnell, Tetrahedron, 41, 5919 (1985).
- 8. A. F. McDonagh, H. E. Smith, <u>J</u>. Org. Chem., Σ , 1 (1968).
- 9. J. E. Baldwin, <u>J</u>. <u>Chem</u>. <u>Soc</u>. <u>Chem</u>. <u>Comm</u>., <u>1976, 734</u>
- 10. C. D. Johnson, The Hammett Equation, Cambridge University Press, 1973, p. 33.
- 11. G. Bernáth, F. Fülöp, A. Kálmán, Gy. Argay, P. Sohár, I. Pelczer, <u>Tetrahedron,</u> \$9, 2053 (1984).
- 12. F. Fülöp, G. Bernáth, P. Sohár, I. Pelczer, <u>J</u>. Chem. Soc. Perkin I, 1204, 2043.
- 13. K. Pihlaja, J. Mattinen, G. Bernáth, F. Fülöp, Magn. Res. Chem., 24, 145 (1986) and references cited therein.
- 14. B. Testa, Principles of Organic Stereochemistry, Marcel Dekker, New York, 1979, p. 137.
- 15. T. A. Crabb, P. Robinson, Magn. Res. Chem., 24, 799 (1986).
- 16. G. Stájer, A. E. Szabó, F. Fülöp, G. Bernáth, A. Kálmán, Gy. Argay, P. Sohár, <u>Tetrahedron, 22,</u> 799 (1979,
- 17. F. Fülöp, G. Bernáth, P. Sohár, Tetrahedron, 41, 5981 (1985).
- 18. F. Fülöp, G. Bernáth, Synthesis, 1201 , 628.
- 19. N. Finch, J. J. Fitt, J. H. Hsu, J. Org. Chem., 40, 206 (1975).
- 20. G. Bernáth, K. L. Láng, Gy. Göndös, P. Márai, K. Kovács, <u>Acta Chim. Ac</u> <u>Sci</u>. <u>Hung</u>., <u>7</u>4, 479 (1972)
- 21. G. Bernáth, Gy. Göndös, L. Gera, M. Török, K. Kovács, P. Sohár, Acta Phys. $Chem.$, 12, 147 (1973).